bokee.net

企业主博客

正文 更多文章

OFDM几种多址接入技术的分析

OFDM(Orthogonal Frequency Division Multiplexing)技术因将整个信道带宽划分成若干个子信道,每一子信道用子载波调制时,允许相邻子载波之间有很大程度的重叠,频谱利用率高;OFDM技术通过串并转换过程将高速传输的数据变为较低速率的传输,从而使传输信道具有平衰落特性,可有效地克服信道频率选择性的影响,减少ISI(Inter-SymbolInterference符号间干扰)对系统性能的影响;OFDM实现调制与解调不同于传统的调制方式,而是通过FFT的正、逆变换实现的,系统实现的复杂度不高。 在无线通信系统中,多址方式允许多个移动用户同时共享有限的频谱资源。

频分多址(FDMA),时分多址(TDMA)和码分多址(CDMA)是无线通信系统中共享有效带宽的三种主要接入技术。OFDM和多址技术的结合能够允许多个用户同时共享有限的无线频谱,从而获得较高的系统容量。在这些多址技术中,CDMA以其诸多的优点,并可提供比FDMATDMA更高的系统容量,成为第三代移动通信系统标准中采用的多址接入方式,因此CDMAOFDM结合的方案成为当前研究的热点问题之一。多载波CDMA不仅可以满足多用户共享频率资源,而且同时可以减少码间干扰,提高系统性能。 

OFDM-FDMA

OFDM-FDMA多址接入方案将传输带宽划分成正交的子载波集,通过将不同的子载波集分配给不同的用户,可用带宽资源可灵活地在不同移动终端之间共享,从而避免了不同用户间的多址干扰。每个用户经历不同无线信道的干扰,可以通过只将具有高信躁比的子载波分配给每个用户来实现。这是一种以频率来区分用户的多址接入方式。 设系统共有M个用户,每个用户使用N个子载波,则系统中共有M×N个子载波。对于第m(m=12M)个用户来说,该用户的输入数据先进行信道编码,速率匹配,交织,然后将交织后的比特流进行符号映射,生产的复数符号调制到N个子载波上。

理论上来说,任意N个子载波没有分配给其他M-1个用户,就可以将这N个子载波分配给该用户。但是考虑到子载波之间的相关性,我们通常选用一种等间隔的子载波分配方案。我们首先选取N个间隔最大(间隔为M) 的子载波,并将它们分配给用户一;然后将这N个等间隔的子载波在频域中移位1个子载波,将它们分配给用户二……将这N个等间隔的子载波在频域中移位m(m =12M-1)个子载波,移位后形成的新的子载波集分配给第m+1个用户。这样分配给这M个用户的子载波集中,子载波之间具有最大的不相关性,可以抑制多址干扰,而且信令的开销最小。在系统的时间同步和载波同步都十分理想的情况下,接收到的信号可以没有ISIICI(Inter-CarrierInterference载波间干扰) 

OFDM-TDMA

OFDM-TDMA多址接入方案在一段时间内将全部带宽资源分配给一个用户,即在一个TDMA帧的几个时隙内,所有子载波为某个用户独占。这是一种以时间来区分用户的多址接入方式。在TDMA帧结构中,一个TDMA无线帧由若干个子帧构成,而一个子帧又由若干个时隙组成,OFDM符号在时隙中传输。在OFDM-TDMA传输系统中,采用TDD模式,可以根据业务的需要灵活的调整上行和下行链路间的转换点,这样使双向业务成为了可能。对于非对称的无线多媒体通信,这是一种实现具有灵活资源管理的高速数据传输的方案之一。

当用户的上行链路数据大于下行链路数据时,可以调整子帧中的转换点,使用户可以使用的时隙数增多,分配给该用户的OFDM符号数相应增加,满足用户高数据速率的需要;当用户的上行链路数据较少,请求低的数据速率时,调整子帧中的转换点,减少用户使用的时隙数,分配给该用户的OFDM符号数相应减少。正是由于这种分配给用户的OFDM符号数可变,使OFDM-TDMA方案可支持具有不同数据速率的多种业务。 

不同多址接入算法的复杂度高度依赖于每个系统采用的自适应方式。对于OFDM-TDMA系统而言,由于低信躁比的子载波被滤除或是使用了自适应调制P编码技术,这样就需要传送额外的信息,这样虽然可以改善性能,但是也增加了信令开销。 

OFDM-CDMA

码分多址技术(CDMACode Diversion Multiple Access)3G的主流技术。窄带信号通过与扩频信号相乘而扩展成宽带信号,使用的扩频信号可以是伪随机码序列。用户共享相同的频谱资源,而不会产生明显的干扰,提高了频谱效率。

扩频技术不但可以将某一特定的扩频信号从其它信号中恢复出来,而且还能有效对抗窄带干扰和多径干扰。 

OFDM适合高速数据传送,它把数据流分成若干个子数据流,再把这些子数据流分别调制到若干个相互正交的子载波上。子载波上较低的数据速率实际上意味着每个子载波信道具有平衰落特性,可有效地克服信道频率选择性地影响,从而减少由于ISI所带来的系统性能损失。子载波的正交性使得信道干扰的影响被减小为每个子载波上乘一个复传输因子,这样信号的均衡就变的非常简单。但是,如果子载波处于深衰落时,如果不采用纠错编码,会产生很高的误码率。 OFDM技术和CDMA技术各有利弊,因此二者的结合可以取长补短,达到更好的通信传输效果,必然在下一代无线移动通信系统中扮演越来越重要的角色。

结束语 

OFDM技术与多种多址技术的结合, 特别是与CDMA技术的结合,能够避免窄带衰落,提高频谱利用率和抗多径衰落的能力。在高码率的情况下, OFDM-CDMA系统比单纯的OFDM系统性能要好。然而,接收端的均衡和解扩导致了噪声放大,此时可以采用更复杂的检测方法,如迭代解扩和译码, OFDM-CDMA系统的性能可以得到更好的改善。OFDM-CDMA系统的主要缺点是它要求相干检测,所以信道估计和均衡是不可少的。鉴于此,多载波 CDMA系统的多用户检测问题和多载波CDMA系统的信道估计和均衡问题将是未来研究的重点。 

分享到:

上一篇:5G距离我们还有多远?

下一篇:VLAN技术介绍

评论 (0条) 发表评论

抢沙发,第一个发表评论
验证码